Kubernetes Patterns – Sidecar


On the last week, I’ve blogged about Ambassador Pattern.

This pattern is very important when we are trying to solve network issues in the Microservices architecture, in a few words Ambassador is a kind of proxy, to help in the service-to-service communications.

Today we’ll talk about Sidecar Pattern, it’s an interesting pattern when we are looking for help with network issues, but as we will see during this post, there are more features which this pattern enable for us.



In the containers world, we need to follow the container Golden Rule, the container should have one single purpose to exist. That is the most important thing to follow.

When we are developing applications using the microservice as an Architectural guide, we shouldn’t worry about concerns related to infrastructures, like log collector, network handlings and other orthogonal concerns. These concerns are more related to the platform where we are running our service than our application code.

We should use our platform to help us with these activities. Kubernetes is a “de-facto” platform to run containers workloads. We can use Kubernetes to deploy a dedicated infrastructure to handle internal network traffic, ISTIO for an example. In this case, ISTIO is our “platform” to help with network handlings.

I’ve blogged about my first impressions about ISTIO and Service Mesh

Kubernetes has the primitive called PODs, the small unit of computational resources in the kubernetes ecosystem, the POD is able to have multiple containers, in that scenario the Sidecar Pattern is a perfect solution to help the main container.

Let’s look at the POD anatomy (the yellow one)


The Sidecar container should add some additional functionalities to the microservice container. The important part to pay attention here is the sidecar should run in a different process and is not able to change anything in the microservice container.

In the same POD, containers are able to share the volumes and the same network, it means the containers can reach each other via “localhost” for an example.

Let’s analyze an example.

In the real microservices architecture, we might have different services and many instances of these services, but, how we are able to look effectively at the logs?

We need a centralized tool that collects these logs, also we need an effective way to query these data to find something that helps us to troubleshoot and debug distributed systems.

Is that role of the main container to send these logs for service in the cloud? Maybe a Sidecar container is able to collect these logs, they are sharing the volumes, and send these data to the cloud.

The sidecar “enrich” the main container functionalities sending data to the cloud systems. That is the main role of Sidecar Container.

Look at the image below:

As we can see, the logger container sends the data to the cloud storage, the logger read data from POD volumes, because they are sharing the disk.

The microservice container doesn’t care about the logs, the main container should play to service our business only.

That is one example where sidecar container can help us adding extra functionalities for our main container.

In the Service Mesh Infrastructure, the sidecar container can help us adding some extra functionalities to help us to handle network issues, it is another example.


The Sidecar Pattern is very useful when we are working in distributed systems, especially in containers world.

It will increase our productivity because we don’t need to pay attention to infrastructure stuff and it makes our code more concise than ever without infrastructure handlings.

Then, it is time to say goodbye to Netflix Ribbon, Netflix Eureka and Netflix Hystrix and put their responsibilities to sidecar container.


Kubernetes Pattern Book

Microsoft Azure Docs

Kubernetes Patterns – Ambassador



Recently, I’m studying kubernetes in-depth, mainly in part about how to use platform features to help me to work with distributed architectures.

During this journey, for my surprise, I’ve found many books of Kubernetes Patterns, and my god, these books opened my mind about “How to use Kubernetes effectively”.

My favorite one is Kubernetes Patterns, the book is awesome, it’s a kind of guide for me right now. The book describes many patterns and categorizes them in principles like Predictable Demands, Declarative Deployments, Health Probe, Managed Lifecycle and Automated Placement.

Today, I’ll talk about an important pattern related to network management techniques.

Let’s talk about Ambassador Pattern.



When we are working with distributed systems, the network is the biggest challenge to solve, remember The Fallacies of Distributed Computing.

We need to do an effective strategy to work with outages, service discovery, circuit breakers, intelligent and dynamic routing rules, and time-outs.

In general, these things require a lot of configuration files envolving connection, authentication and authorization. These configurations should be dynamic as well, because in the distributed systems, addresses for instances, changes a lot during a certain timebox.

Of course, sometimes we are not able to handle these issues because our “application” is not able to handle it, our framework which the application is coded doesn’t support these features.

Also, we need to remember the containers Golden Rule, the container should exist for one single and small reason.

Maybe, handle these challenges into our application code cannot be a good idea, especially because sometimes we need to integrate with legacy applications.

The ambassador help us exactly at this point, let’s see how it happening.


Ambassador acts as “proxy” and hides all the complexities of accessing the external services.

We will put the ambassador container between our main application and external services connections. Just to remind, our ambassador container should be deployed in the same Kubernetes POD, which resides our main application container.

Using this simple approach we able to handle network failures, security, resiliency in the ambassador container, simple and effective way to handle these hards things to solve.

Look at the image below

The Ambassador Container should handle configurations related to Service Discovery, Time-outs, Circuit Breaker, Smart Routing and Security


The ambassador Pattern is very useful when we are working with distributed systems. It will reduce our main application complexity taking off the network management in our application code.

Remember: It will add some latency overhead. If network latency is a critical point for you, maybe you need to think about the ambassador adoption.



Kubernetes Patterns book